Calculate #int_0^(2pi) cos^2x .dx#?
A) Zero
B) 2
C) 1/2
D) #pi#
The answer is D for your reference
A) Zero
B) 2
C) 1/2
D)
The answer is D for your reference
2 Answers
Yes, the correct answer is
Explanation:
Use the power reduction formula
#cos^2x= (1 + cos2x)/2# .
So we have:
#I = int_0^(2pi) (1 + cos2x)/2#
#I = 1/2int_0^(2pi) 1 + cos(2x)dx#
#I = 1/2int_0^(2pi) 1 dx + 1/2int_0^(2pi) cos(2x)dx#
If we let
#I = 1/2[x]_0^(2pi) + 1/2(1/2)[sin(2x)]_0^(2pi)#
The integral equals
#I = 1/2(2pi) + 1/4(sin(4pi) - sin(0))#
#I = pi - 1/4(0 - 0)#
#I = pi#
Answer
Hopefully this helps!
We can rewrite this:
Note that
Rewrite
Add
Evaluate these integrals:
Dividing by