Let, I=int_2^(2sqrt3)1/(x^2sqrt(x^2+4))dxI=∫2√321x2√x2+4dx.
We subst. x=2tany rArr dx=2sec^2ydyx=2tany⇒dx=2sec2ydy.
Also, when x=2, 2tany=2rArr y=pi/4, and, x=2,2tany=2⇒y=π4,and,
when x=2sqrt3 rArr y=pi/3x=2√3⇒y=π3.
:. I=int_(pi/4)^(pi/3)(2sec^2y)/{4tan^2ysqrt(4tan^2y+4)}dy,
=int_(pi/4)^(pi/3)(2sec^2y)/{4tan^2ysqrt(4tan^2y+4)}dy,
=1/4int_(pi/4)^(pi/3)cosy/sin^2ydy,
=1/4int_(pi/4)^(pi/3){cosy/siny*1/siny}dy,
=1/4int_(pi/4)^(pi/3)cotycscydy,
=1/4[-csc y]_(pi/4)^(pi/3),
=-1/4[csc(pi/3)-csc(pi/4)],
=-1/4(2/sqrt3-sqrt2),
=-1/(2sqrt3)+1/4sqrt2,
=1/4sqrt2-1/6sqrt3.
rArr I=1/12(3sqrt2-2sqrt3).