Calculate this integral int_2^(2sqrt3)1/(x^2sqrt(x^2+4))dx =2321x2x2+4dx= ?

2 Answers
Jan 30, 2018

1/12(3sqrt2-2sqrt3)112(3223).

Explanation:

Let, I=int_2^(2sqrt3)1/(x^2sqrt(x^2+4))dxI=2321x2x2+4dx.

We subst. x=2tany rArr dx=2sec^2ydyx=2tanydx=2sec2ydy.

Also, when x=2, 2tany=2rArr y=pi/4, and, x=2,2tany=2y=π4,and,

when x=2sqrt3 rArr y=pi/3x=23y=π3.

:. I=int_(pi/4)^(pi/3)(2sec^2y)/{4tan^2ysqrt(4tan^2y+4)}dy,

=int_(pi/4)^(pi/3)(2sec^2y)/{4tan^2ysqrt(4tan^2y+4)}dy,

=1/4int_(pi/4)^(pi/3)cosy/sin^2ydy,

=1/4int_(pi/4)^(pi/3){cosy/siny*1/siny}dy,

=1/4int_(pi/4)^(pi/3)cotycscydy,

=1/4[-csc y]_(pi/4)^(pi/3),

=-1/4[csc(pi/3)-csc(pi/4)],

=-1/4(2/sqrt3-sqrt2),

=-1/(2sqrt3)+1/4sqrt2,

=1/4sqrt2-1/6sqrt3.

rArr I=1/12(3sqrt2-2sqrt3).

Jan 30, 2018

The answer is =0.065

Explanation:

tan^2x+1=sec^2x

Perform this integral by substitution

Let x=2tanu, =>, dx=2sec^2udu

Therefore,

int(dx)/(x^2sqrt(x^2+4))=int(2sec^2 udu)/(4tan^2usqrt(4tan^2u+4))

=1/4int(secudu)/tan^2u

=1/4int(cosudu)/sin^2u

Let v=sinu, =>, dv=cosudu

=1/4int(dv)/v^2

=-1/4*1/v

=-1/4*1/sinu

=-1/4*1/sin(arctan(x/2))

=-1/4sqrt(4+x^2)/x+C

Now, calculate the definite integral

int_2^(2sqrt3)(dx)/(x^2sqrt(x^2+4))=[-sqrt(4+x^2)/(4x)]_2^(2sqrt3)

=(-1/(2sqrt3))-(1/(2sqrt2))

=0.065