Calculate |vec u + vec v| help?

Given that |vec u| = 3 and |vec v| = 4

ALSO
calculate the angle between vec u and
vec u + vec v

1 Answer
Jun 9, 2018

See below

Explanation:

First Part

  • bb u * bb v = abs bb u abs bb v cos phi

abs bb u = 3, abs bb v = 4, phi = (2pi)/3

abs(bb u + bb v)^2 = (bb u + bb v )*(bb u + bb v )

= u^2 + v^2 + 2 bb u * bb v

= 3^2 + 4^2 + 2 * 3 * 4 * cos(120)

=13

implies abs(bb u + bb v) = sqrt13

Second Part

bb u * (bb u + bbv) =abs bb u * abs (bb u + bbv) cos theta

cos theta = (bb u * (bb u + bbv))/ (abs bb u * abs (bb u + bbv) )

= (u^2 +abs bb u abs bb v cos phi)/ (abs bb u * abs (bb u + bbv) )

= (3^2 +3 * 4 * cos (120))/ (3 * sqrt(13) )

= 1/sqrt(13)

theta = cos^(-1) (1/sqrt(13)) = 73.9^o