Can anyone prove this please?

{(b^2-c^2)//a^2} xx sin 2A + {(c^2-a^2)//b^2}xx sin 2B + {(a^2-b^2)//c^2} xx sin 2C =0

3 Answers
Feb 20, 2018

Use the sine law for triangles and some simple trigonometric identities.

Explanation:

From the sine law of triangles

a/{sin A}= b/{sin B} = c/{sin C}

we can easily see that

{b^2 -c^2}/a^2 = {sin^2B-sin^2C}/sin^2A= {(sin B-sinC)(sin B+ sin C)}/{sin^2A} = {2 sin ({B-C}/2)cos({B+C}/2)times 2 sin({B+C}/2)cos({B-C}/2)}/sin^2A = {sin(B-C)sin(B+C)}/sin^2A = {sin(B-C)sin(pi-A)}/sin^2A = sin(B-C)/sinA

So that

{b^2 -c^2}/a^2 times sin2A = 2cosAsin(B-C) = 2 cosAsinBcosC-2cosAcosBsinC

The other two terms can be obtained from this one by simply cyclically permuting A, B and C. Adding the three terms leads to the proof trivially .

Feb 20, 2018

Please see below.

Explanation:

The first term of LHS=(b^2-c^2)/a^2*sin2A

=(4R^2[sin^2A-sin^2B])/(4R^2*sin^2A)*sin2A

=(sin(B+C)sin(B-C))/sin^2A*sin2A

=(sinAsin(B-C))/(sinA*sinA)*2sinA*cosA

=2cosAsin(B-C)

=sin(A+B-C)-sin(A-B+C)

=sin(pi-2C)-sin(pi-2B)=sin2C-sin2B

Similarly The second term=sin2A-sin2B and

The third term=sin2B-sin2A

Whole LHS=sin2C-sin2B+sin2A-sin2C+sin2B-sin2C=0

Note that sin^2A-sin^2B=sin(A+B)*sin(A-B)

Feb 20, 2018

Kindly refer to the Explanation.

Explanation:

Prerequisites : In the usual Notation for DeltaABC,

Sine-Rule : a/sinA=2R, or, sinA=a/(2R).

Cosine-Rule : cosA=(b^2+c^2-a^2)/(2bc).

We have, (b^2-c^2)/a^2*sin2A=(b^2-c^2)/a^2*(2sinAcosA),

=(b^2-c^2)/a^2*{2*a/(2R)*(b^2+c^2-a^2)/(2bc)},

={(b^2-c^2)(b^2+c^2-a^2)}/(Rabc),

={(b^2-c^2)(b^2+c^2)-a^2(b^2-c^2)}/(Rabc),

rArr(b^2-c^2)/a^2*sin2A={(b^4-c^4)-a^2(b^2-c^2)}/(Rabc).

Obtaining similar expressions for the remaining terms of the left

member and adding them, the result follows.