Solution of #ax^2+bx+c=0# is given by a quadratic formula as #x=(-b+-sqrt(b^2-4ac))/(2a)#
therefore for #x^2+ix-i=0#
#x=(-i+-sqrt(i^2+4i))/2#
= #(-i+-sqrt(-1+4i))/2#
As #-1+4i=sqrt17(costheta+isintheta)#, where #tantheta=-4#
and using DeMoivre's theorem
#sqrt(-1+4i)=17^(1/4)(cosalpha+isinalpha)#, where #theta=2alpha#
As #tan2alpha= (2tanalpha)/(1-tan^2alpha)=-4#
we have #4tan^2alpha-2tanalpha-4=0# and
#tanalpha=(2+-2sqrt17)/4# and #alpha=tan^(-1)((2+-2sqrt17)/4)#
Hence we have two roots of #-1+4i# given by
#17^(1/4)(cosalpha+isinalpha)#, where #alpha=tan^(-1)((2+-2sqrt17)/4)#
and #x=(-i+-17^(1/4)(cosalpha+isinalpha))/2#
= #17^(1/4)/2cosalpha+i(17^(1/4)/2sinalpha-1)#
and #17^(1/4)/2cosalpha-i(17^(1/4)/2sinalpha+1)#,
where #alpha=tan^(-1)((2+-2sqrt17)/4)#