Can you think of a different way?

Any way you can calculate this integral
int_0^(pi/4)(sqrt(1+cosx)) dx
without using the trigonometric identity 1+cosx=2cos^2(x/2) ?

1 Answer
Feb 2, 2018

Please see below.

Explanation:

sqrt(1+cosx) = sqrt(1+cosx) * sqrt(1-cosx)/sqrt(1-cosx)

= sqrt(sin^2x)/sqrt(1-cosx)

= abs(sinx)/sqrt(1-cosx)

So,

int_0^(pi/4) sqrt(1+cosx) dx = int_0^(pi/4) (sinx)/sqrt(1-cosx) dx

Now use u = 1-cosx