Consider the function f(x)=(10/x^2)-(7/x^6) if f(1)=0, then what is f(x)?

1 Answer
Aug 21, 2015

If I'm correct that that should be f'(x) to start, then f(x) = -10/x + 7/(5x^5) +43/5

Explanation:

I'm going to guess the question is intended to be:

f'(x)=(10/x^2)-(7/x^6) if f(1)=0, then what is f(x)?

f'(x)=10x^-2 - 7x^-6

f(x) = 10x^(-2+1)/(-2+1) - 7 x^(-6+1)/(-6+1) +C

= 10x^-1/-1-7x^-5/-5+C

So,

f(x) = -10/x + 7/(5x^5) +C

Now, f(1) = -10/1+7/(5(1))+C = 0 gets us:

C = 43/5 and

f(x) = -10/x + 7/(5x^5) +43/5