Convert all complex numbers to trigonometric form and then simplify the expression. Write the answer in standard form.? ((2+2i)^5 (-3+i)^3) /(sqrt 3+i)^10(2+2i)5(3+i)3(3+i)10

1 Answer
May 14, 2018

(27sqrt3)/4-i27/42734i274

Explanation:

So this took me so many attempts and here it goes:

Find the r values using this formula:

r=sqrt (x^2+y^2)r=x2+y2

Plug in:

([2sqrt2 (cos45^o + isin45^o)]^5[3sqrt2 (cos135^o + isin135^o)]^3 )/[2(cos 30^o + isin30^o)]^10 [22(cos45o+isin45o)]5[32(cos135o+isin135o)]3[2(cos30o+isin30o)]10

Power and Multiply:

(2sqrt2)^5(22)5 see how I powered the 2sqrt222 and you do the same with the rest

((2sqrt2)^5(cos5 times 45^o + isin5 times45^o)(3sqrt2)^3(cos 3 times 135^o +isin3 times 135^o))/(2^10(cos10 times + isin10 times 30))(22)5(cos5×45o+isin5×45o)(32)3(cos3×135o+isin3×135o)210(cos10×+isin10×30)

Simplify:

(128sqrt2(cos225^o + isin225^o) 54sqrt2(cos405^o + isin405^o))/(1024(cos 300^o + isin 300^o))1282(cos225o+isin225o)542(cos405o+isin405o)1024(cos300o+isin300o)

(13824 (cos630^o + isin630^o)) /(1024(cos300^o + isin300^o))13824(cos630o+isin630o)1024(cos300o+isin300o)

Divide:

27/2272 (cos630^o-300^o + isin630^o-300^o)(cos630o300o+isin630o300o)

Simplify:

27/2272 (cos330^o + isin330^o)(cos330o+isin330o)

Which gives your answer . . .