#cos^4x+sin^2x=cos^2x+sin^4x#?

3 Answers
May 31, 2018

Please see below.

Explanation:

.

#cos^4x+sin^2x=cos^2x+sin^4x#

#cos^4x=(cos^2x)^2#

Let's plug this in:

#cos^4x+sin^2x=(cos^2x)^2+sin^2x#

We know that we have the identity:

#sin^2x+cos^2x=1#

Let's solve for #cos^2x# and plug it in:

#cos^2x=1-sin^2x#

#(1-sin^2x)^2=1-2sin^2x+sin^4x#, using #(a-b)^2=a^2-2ab+b^2#

Let's plug it in:

#cos^4x+sin^2x=(cos^2x)^2+sin^2x=(1-sin^2x)^2+sin^2x=1-2sin^2x+sin^4x+sin^2x=1-sin^2x+sin^4x#

Now, we substitute #sin^2x+cos^2x# for #1#:

#cos^4x+sin^2x=(cos^2x)^2+sin^2x=(1-sin^2x)^2+sin^2x=1-2sin^2x+sin^4x+sin^2x=1-sin^2x+sin^4x=sin^2x+cos^2x-sin^2x+sin^4x=cos^2x+sin^4x#

May 31, 2018

Kindly refer to a Proof in the Explanation.

Explanation:

#cos^4x+sin^2x=(cos^2x)^2+sin^2x#,

#=(1-sin^2x)^2+sin^2x#,

#=(1-ul(2sin^2x)+sin^4x)+ul(sin^2x)#,

#=ul(1-sin^2x)+sin^4x#,

#=cos^2x+sin^4x#, as desired!

May 31, 2018

Another Proof.

Explanation:

A very simple way to solve is as under :

#cos^4x-sin^4x#,

#=(cos^2x+sin^2x)(cos^2x-sin^2x)#,

# i.e., cos^4x-sin^4x=cos^2x-sin^2x#.

#:. cos^4x+sin^2x=cos^2x+sin^4x#.