Since, #cos2x=cos^2x-sin^2x=(cosx+sinx)(cosx-sinx),#
we have,
# cos2x=cosx+sinx.#
# rArr (cosx+sinx)(cosx-sinx)-(cosx+sinx)=0.#
# rArr (cos+sinx)(cosx-sinx-1)=0.#
#rArr cos+sinx=0, or, cosx-sinx=1.#
In case, #cosx+sinx=0 :. sinx=-cosx rArr sinx/cosx=-1, (cosxne0).#
#rArr tanx=-1=tan(-pi/4).#
We know that, #tantheta=tanalpha rArr theta=npi+alpha, n in ZZ.#
#:. tanx=tan(-pi/4) rArr x=npi-pi/4, n in ZZ.#
If, #cosx-sinx=1, :. 1/sqrt2(cosx-sinx)=1/sqrt2.#
#:. cosx*1/sqrt2-sinx*1/sqrt2=1/sqrt2.#
#:. cosxcos(pi/4)-sinxsin(pi/4)=1/sqrt2.#
#:. cos(x+pi/4)=1/sqrt2=cos(pi/4).#
We know, #costheta=cosalpharArr theta=2npipmalpha, n in ZZ.#
#:. cos(x+pi/4)=cos(pi/4) rArr x+pi/4=2npipmpi/4.#
#rArr x=2npipmpi/4-pi/4=2npi, or, 2npi-pi/2, n in ZZ.#
Altogether, The Soln. Set is,
#{npi-pi/4}uu{2npi}uu{2npi-pi/2}, n in ZZ.#
Enjoy Maths.!