Cot B + cos B divided by sec B - cos B = csc B + 1 divided by tan^2 B can it be verified?

1 Answer
Mar 13, 2018

Yes... see below

Explanation:

#(Cot B + cos B)/(sec B - cos B) = (csc B + 1)/ tan^2 B#

#(CotB+cosB)/(1/cosB - cos^2 B/cosB)=#

#(CosB/SinB+(cosBsinB)/sinB)/(sin^2B/cosB)=#

#((CosB+cosBsinB)/sinB)*(cosB)/(sin^2B)=#

#((Cos^2B+cos^2BsinB)/sin^3B)=#

#Cos^2B/sin^3B+(cos^2BsinB)/sin^3B=#

#Cos^2B/sin^2B*1/sinB+cos^2B/sin^2B=#

#cot^2B*cscB+cot^2B=#

#cot^2B*cscB+cot^2B=#

#cscB/tan^2B+1/tan^2B=#

#(cscB+1)/tan^2B#