Cot B + cos B divided by sec B - cos B = csc B + 1 divided by tan^2 B can it be verified?

1 Answer
Mar 13, 2018

Yes... see below

Explanation:

(Cot B + cos B)/(sec B - cos B) = (csc B + 1)/ tan^2 BcotB+cosBsecBcosB=cscB+1tan2B

(CotB+cosB)/(1/cosB - cos^2 B/cosB)=cotB+cosB1cosBcos2BcosB=

(CosB/SinB+(cosBsinB)/sinB)/(sin^2B/cosB)=cosBsinB+cosBsinBsinBsin2BcosB=

((CosB+cosBsinB)/sinB)*(cosB)/(sin^2B)=(cosB+cosBsinBsinB)cosBsin2B=

((Cos^2B+cos^2BsinB)/sin^3B)=(cos2B+cos2BsinBsin3B)=

Cos^2B/sin^3B+(cos^2BsinB)/sin^3B=cos2Bsin3B+cos2BsinBsin3B=

Cos^2B/sin^2B*1/sinB+cos^2B/sin^2B=cos2Bsin2B1sinB+cos2Bsin2B=

cot^2B*cscB+cot^2B=cot2BcscB+cot2B=

cot^2B*cscB+cot^2B=cot2BcscB+cot2B=

cscB/tan^2B+1/tan^2B=cscBtan2B+1tan2B=

(cscB+1)/tan^2BcscB+1tan2B