(Cot B + cos B)/(sec B - cos B) = (csc B + 1)/ tan^2 BcotB+cosBsecB−cosB=cscB+1tan2B
(CotB+cosB)/(1/cosB - cos^2 B/cosB)=cotB+cosB1cosB−cos2BcosB=
(CosB/SinB+(cosBsinB)/sinB)/(sin^2B/cosB)=cosBsinB+cosBsinBsinBsin2BcosB=
((CosB+cosBsinB)/sinB)*(cosB)/(sin^2B)=(cosB+cosBsinBsinB)⋅cosBsin2B=
((Cos^2B+cos^2BsinB)/sin^3B)=(cos2B+cos2BsinBsin3B)=
Cos^2B/sin^3B+(cos^2BsinB)/sin^3B=cos2Bsin3B+cos2BsinBsin3B=
Cos^2B/sin^2B*1/sinB+cos^2B/sin^2B=cos2Bsin2B⋅1sinB+cos2Bsin2B=
cot^2B*cscB+cot^2B=cot2B⋅cscB+cot2B=
cot^2B*cscB+cot^2B=cot2B⋅cscB+cot2B=
cscB/tan^2B+1/tan^2B=cscBtan2B+1tan2B=
(cscB+1)/tan^2BcscB+1tan2B