Cot2A+tanA=?

2 Answers
Feb 24, 2018

csc2A

Explanation:

cot2A+tanA

=(cos2A)/(sin2A)+sinA/cosA

=(cos2AcosA+sin2AsinA)/(sin2AcosA)

=cos(2A-A) /(sin2AcosA)

=cosA/(sin2AcosA)

=1/(sin2A)

=csc2A

Formulae:

  • cosCcosD+sinCsinD=cos(C-D)
  • cos2AcosA+sin2AsinA=cos(2A-A)
Feb 24, 2018

= csc 2A

Explanation:

Call tan A = t , and apply the trig identity
tan 2A = (2tan A)/(1 - tan^2 A)
The expression becomes:
f (A) = cot 2A + tan A = (1 - t^2)/(2t) + t = ((1 - t^2) + 2t^2)/(2t)
f(A) = (1 + t^2)/(2t) = (1 +tan^2 A)/(2tan A)
Using trig identity, replace (1 + tan^2 A) by (sec^2 A), we get:
f(A) = (sec^2 A)((2sin A)/(cos A)) = (cos A)/(2sin A.cos^2 A)
Note that: sin 2A = 2sin A.cos A -->
f(A) = 1/(sin 2A) = csc 2A