**Determine all the values of the parameter m for which the operation: ** 4x^2-6mx+(2m+3)(m-3)4x26mx+(2m+3)(m3) has TWO different real solutions. x_1<x_2x1<x2 (4x_1-4x_2-1)(4x_1-4x_2+1)<0(4x14x21)(4x14x2+1)<0 ?

4x^2-6mx+(2m+3)(m-3)4x26mx+(2m+3)(m3)

x_1<x_2x1<x2

(4x_1-4x_2-1)(4x_1-4x_2+1)<0(4x14x21)(4x14x2+1)<0

1 Answer
May 12, 2017

m < -13/2m<132 or -1/6 < m16<m

Explanation:

Solving for xx

4 x^2 - 6 m x + (2 m + 3) (m - 3) = 04x26mx+(2m+3)(m3)=0

we obtain

{(x_1=1/2(m-3)),(x_2=1/2(2m+3)):}

so

(4 x_1 - 4 x_2 - 1) (4 x_1 + 4 x_2 + 1) = -(12m^2+80m+13) < 0

so we will determine m such that

12m^2+80m+13 > 0

so

m < -13/2 or -1/6 < m