Differentiate cos^-1(2x^2-1) with respect to sin^-1√1-x^2?

1 Answer
Jan 22, 2018

(df)/(dg)=sqrt((2-x^2)/(1-x^2))

Explanation:

Let f(x)=cos^(-1)(2x^2-1) and g(x)=sin^(-1)(1-x^2)

what we are seeking is (df)/(dg), which is equal to ((df)/(dx))/((dg)/(dx))

As f=cos^(-1)(2x^2-1), we have cosf=2x^2-1

and differentiating -sinf*(df)/(dx)=4x

or (df)/(dx)=-(4x)/sinf=-(4x)/sqrt(1-cos^2f)=-(4x)/sqrt(1-(2x^2-1))^2

= -(4x)/sqrt(1-4x^4+4x^2-1)=-(4x)/(2xsqrt(1-x^2))=-2/sqrt(1-x^2)

Similarly we have sing=1-x^2 and cosg*(dg)/(dx)=-2x

or (dg)/(dx)=-(2x)/cosg=-(2x)/sqrt(1-sin^2g)=-(2x)/sqrt(1-(1-x^2)^2)

= -(2x)/sqrt(1-1+2x^2-x^4)=-2/sqrt(2-x^2)

Hence (df)/(dg)=(-2/sqrt(1-x^2))/(-2/sqrt(2-x^2))

= sqrt((2-x^2)/(1-x^2))