Let f(x)=cos^(-1)(2x^2-1) and g(x)=sin^(-1)(1-x^2)
what we are seeking is (df)/(dg), which is equal to ((df)/(dx))/((dg)/(dx))
As f=cos^(-1)(2x^2-1), we have cosf=2x^2-1
and differentiating -sinf*(df)/(dx)=4x
or (df)/(dx)=-(4x)/sinf=-(4x)/sqrt(1-cos^2f)=-(4x)/sqrt(1-(2x^2-1))^2
= -(4x)/sqrt(1-4x^4+4x^2-1)=-(4x)/(2xsqrt(1-x^2))=-2/sqrt(1-x^2)
Similarly we have sing=1-x^2 and cosg*(dg)/(dx)=-2x
or (dg)/(dx)=-(2x)/cosg=-(2x)/sqrt(1-sin^2g)=-(2x)/sqrt(1-(1-x^2)^2)
= -(2x)/sqrt(1-1+2x^2-x^4)=-2/sqrt(2-x^2)
Hence (df)/(dg)=(-2/sqrt(1-x^2))/(-2/sqrt(2-x^2))
= sqrt((2-x^2)/(1-x^2))