Let u=tan^-1((2x)/(1-x^2)), and, v=sin^-1((2x)/(1+x^2)).
Note that, because of the Dr. of u, x in RR-{+-1}....(ast)
:. x <-1, or, -1 lt x lt 1, or, x >1.
Subst. x=tantheta. because (ast), theta in (-pi/2,pi/2)-{+-pi/4}, &, theta=tan^-1x.
:. u=tan^-1{(2tantheta)/(1-tan^2theta)}=tan^-1(tan2theta), and,
v=sin^-1{(2tantheta)/(1+tan^2theta)}=sin^-1(sin2theta).
Case (1) : -1 lt x lt 0, and, 0 lt x lt 1.
:. tan(-pi/4) lt tantheta lt tan 0, &, tan0 lt tantheta lt tan(pi/4).
Since, tan fun. is uarr in all quadrants, it follows that,
-pi/4 lt theta lt 0, and, 0 lt theta lt pi/4.
:. -pi/2 lt 2theta lt 0, &, 0 lt 2theta lt pi/2.
&, :. by the Defns of tan^-1 and sin^-1 functions, we have,
u=tan^-1(tan2theta)=2theta, and, v=sin^-1(sin2theta)=2theta.
Thus, u=2tan^-1x=v, if, -1 lt x lt 1.
"Therefore, the Reqd. Deri.="(du)/(dv)={(du)/dx}/{(dv)/dx},
={2/(1+x^2)}/{2/(1+x^2)}=1, if -1 lt x lt 1.
Case (2) : x > 1.
:. tantheta > tan(pi/4) rArr theta > pi/4...[because, tan" is "uarr"]
Preferably, pi/4 < theta < pi/2 rArr pi/2 < 2theta < pi.
rArr pi/2-pi < 2theta-pi < pi-pi, i.e., -pi/2 <2theta-pi < 0.
Then, tan(2theta -pi)=-tan(pi-2theta)=-(-tan2theta)=tan2theta.
:. u=tan^-1(tan2theta)=tan^-1(tan(2theta-pi))," where "(2theta-pi) in (-pi/2,0) sub (-pi/2,pi/2).
:. by the Defns. of tan^-1 and sin^-1 functions, we get,
u=2theta-pi=2tan^-1x-pi;
"Also, "sin(2theta-pi)=-sin(pi-2theta)=-sin2theta
:. sin2theta=-sin(2theta-pi).
:. v=sin^-1(sin2theta)=sin^-1(-sin(2theta-pi))=-sin^-1(sin(2theta-pi))=-(2theta-pi)=pi-2tantheta=pi-2tan^-1x, (x >1)
:." The Reqd. Deri.="{2/(1+x^2)-0}/{0-2/(1+x^2)}=-1, if x >1.
Case (3) : x lt -1.
In this case, x lt -1 rArr theta lt -pi/4.
We take, -pi/2 lt theta lt -pi/4 :. -pi lt 2theta lt -pi/2.
:. 0 lt (pi+2theta) lt pi/2 rArr (pi+2theta) in (0,pi/2) sub (-pi/2,pi/2).
Also, tan(pi+2theta)=tan2theta, &, sin(pi+2theta)=-sin2theta.
:. u=tan^-1(tan2theta)=tan^-1(tan(pi+2theta))=pi+2theta=pi+2tan^-1x,
and, v=sin^-1(sin2theta)=sin^-1(-sin(pi+2theta))=-sin^-1(sin(pi+2theta))=-pi-2theta=-pi-2tan^-1x, (xlt-1.)
:. (du)/(dv)=-1, xlt-1.