Differentiate tan^-1 ((2x)/(1-x^2)) with respect to sin^-1 ((2x)/(1+x^2))?

2 Answers
Apr 11, 2017

-1

Explanation:

Calling

{(y_1=arctan(f_1(x))),(y_2=arcsin(f_2(x))):}

with

{(f_1(x)=(2x)/(1-x^2)),(f_2(x)=(2x)/(1+x^2)):}

we need (dy_1)/(dy_2)

but

(dy_1)/(dy_2)=((dy_1)/(dx))//((dy_2)/(dx)) = (dy_1)/(dx) (dx)/(dy_2) = (dy_1)/(dy_2)

and

{(d/(dx)arctan(f_1(x))=(f'_1(x))/(1+f_1^2(x))),(d/(dx)arcsin(f_2(x))=(f'_2(x))/sqrt(1-f_2^2(x))):}

note that

d/(dx)arctan(g(x))=d/(dg)arctan(g)(dg)/(dx) and
d/(dx)arcsin(g(x))=d/(dg)arcsin(g)(dg)/(dx)

and

{(d/(dg)arctan(g)=1/(1+g^2)),(d/(dg)arcsin(g)=1/sqrt(1-g^2)):}

so after substituting

{(f'_1(x)=(2 (1 + x^2))/(x^2-1)^2),(f'_2(x)=(2 (1 - x^2))/(1 + x^2)^2):}

and simplifying

(dy_1)/(dy_2)=((f'_1(x))/(1+f_1^2(x)))/((f'_2(x))/sqrt(1-f_2^2(x)))=-1

Apr 12, 2017

"The Reqd. Deri.="1, if -1ltxlt1;
=-1, if x>1:
-1, if x<-1.

Explanation:

Let u=tan^-1((2x)/(1-x^2)), and, v=sin^-1((2x)/(1+x^2)).

Note that, because of the Dr. of u, x in RR-{+-1}....(ast)

:. x <-1, or, -1 lt x lt 1, or, x >1.

Subst. x=tantheta. because (ast), theta in (-pi/2,pi/2)-{+-pi/4}, &, theta=tan^-1x.

:. u=tan^-1{(2tantheta)/(1-tan^2theta)}=tan^-1(tan2theta), and,

v=sin^-1{(2tantheta)/(1+tan^2theta)}=sin^-1(sin2theta).

Case (1) : -1 lt x lt 0, and, 0 lt x lt 1.

:. tan(-pi/4) lt tantheta lt tan 0, &, tan0 lt tantheta lt tan(pi/4).

Since, tan fun. is uarr in all quadrants, it follows that,

-pi/4 lt theta lt 0, and, 0 lt theta lt pi/4.

:. -pi/2 lt 2theta lt 0, &, 0 lt 2theta lt pi/2.

&, :. by the Defns of tan^-1 and sin^-1 functions, we have,

u=tan^-1(tan2theta)=2theta, and, v=sin^-1(sin2theta)=2theta.

Thus, u=2tan^-1x=v, if, -1 lt x lt 1.

"Therefore, the Reqd. Deri.="(du)/(dv)={(du)/dx}/{(dv)/dx},

={2/(1+x^2)}/{2/(1+x^2)}=1, if -1 lt x lt 1.

Case (2) : x > 1.

:. tantheta > tan(pi/4) rArr theta > pi/4...[because, tan" is "uarr"]

Preferably, pi/4 < theta < pi/2 rArr pi/2 < 2theta < pi.

rArr pi/2-pi < 2theta-pi < pi-pi, i.e., -pi/2 <2theta-pi < 0.

Then, tan(2theta -pi)=-tan(pi-2theta)=-(-tan2theta)=tan2theta.

:. u=tan^-1(tan2theta)=tan^-1(tan(2theta-pi))," where "(2theta-pi) in (-pi/2,0) sub (-pi/2,pi/2).

:. by the Defns. of tan^-1 and sin^-1 functions, we get,

u=2theta-pi=2tan^-1x-pi;

"Also, "sin(2theta-pi)=-sin(pi-2theta)=-sin2theta

:. sin2theta=-sin(2theta-pi).

:. v=sin^-1(sin2theta)=sin^-1(-sin(2theta-pi))=-sin^-1(sin(2theta-pi))=-(2theta-pi)=pi-2tantheta=pi-2tan^-1x, (x >1)

:." The Reqd. Deri.="{2/(1+x^2)-0}/{0-2/(1+x^2)}=-1, if x >1.

Case (3) : x lt -1.

In this case, x lt -1 rArr theta lt -pi/4.

We take, -pi/2 lt theta lt -pi/4 :. -pi lt 2theta lt -pi/2.

:. 0 lt (pi+2theta) lt pi/2 rArr (pi+2theta) in (0,pi/2) sub (-pi/2,pi/2).

Also, tan(pi+2theta)=tan2theta, &, sin(pi+2theta)=-sin2theta.

:. u=tan^-1(tan2theta)=tan^-1(tan(pi+2theta))=pi+2theta=pi+2tan^-1x,

and, v=sin^-1(sin2theta)=sin^-1(-sin(pi+2theta))=-sin^-1(sin(pi+2theta))=-pi-2theta=-pi-2tan^-1x, (xlt-1.)

:. (du)/(dv)=-1, xlt-1.