Differentiate tan1(sinxcosxsinx+cosx) with respect to x2?

1 Answer
Apr 7, 2018

Let y=tan1(sinxcosxsinx+cosx)

tan1(sinxcosxcosxcosxsinxcosx+cosxcosx)

tan1(tanx1tanx+1)

tan1(tanxtan451+tanxtan45)

tan1((tan(x45))

xπ4

Therefore, dydx=1

Now. let z=x2

Therefore, dzdx=12

The question says, "Differentiate tan1(sinxcosxsinx+cosx) with respect to x2"

dydz=dydx×dxdz

1×21=2