How do I solve this system of linear equations? #x+y+z=-1#, #2x+4y+z=11#, #x+2y-3z=-3#

Does anyone know how to solve a system of equations? if so can you please help me with this one?
#x+y+z=-1#
#2x+4y+z=11#
#x+2y-3z=-3#

1 Answer
Jan 17, 2018

#x=-78/7#, #y=54/7# and #z=17/7#

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

#A=((1,1,1,|,-1),(2,4,1,|,11),(1,2,-3,|,-3))#

I have written the equations not in the sequence as in the question in order to get #1# as pivot.

Perform the folowing operations on the rows of the matrix

#R2larrR2-2R1#; #R3larrR3-R1#

#A=((1,1,1,|,-1),(0,2,-1,|,13),(0,1,-4,|,-2))#

#R3larrR3*2#

#A=((1,1,1,|,-1),(0,2,-1,|,13),(0,2,-8,|,-4))#

#R3larrR3-R2#

#A=((1,1,1,|,-1),(0,2,-1,|,13),(0,0,-7,|,-17))#

#R3larr(R3)/(-7)#

#A=((1,1,1,|,-1),(0,2,-1,|,13),(0,0,1,|,17/7))#

#R1larrR1-R3#; #R2larrR2+R3#

#A=((1,1,0,|,-24/7),(0,2,0,|,108/7),(0,0,1,|,17/7))#

#R2larr(R2)/2#

#A=((1,1,0,|,-24/7),(0,1,0,|,54/7),(0,0,1,|,17/7))#

#R1larrR1-R2#

#A=((1,0,0,|,-78/7),(0,1,0,|,54/7),(0,0,1,|,17/7))#

Thus #x=-78/7#, #y=54/7# and #z=17/7#