Does cos240=(cos120)^2-(sin120)^2cos240=(cos120)2(sin120)2?

2 Answers
Oct 21, 2016

Yes

Oct 22, 2016

Yes, it does

Explanation:

A common trigonometric identity states that

cos(2theta) = cos^2(theta) - sin^2(theta)cos(2θ)=cos2(θ)sin2(θ) for any angle thetaθ.

This can be derived from the sum of angles formula

cos(alpha+beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)cos(α+β)=cos(α)cos(β)sin(α)sin(β)

by setting alpha = betaα=β.

In the given case, that gives us

cos^2(120) - sin^2(120) = cos(2*120) = cos(240)cos2(120)sin2(120)=cos(2120)=cos(240)