Evaluate: #int_0^1 ln(x+1)/(x^2+1) dx?#

1 Answer
Jul 26, 2018

#int_0^1 ln(x+1)/(x^2+1) "d"x=(piln2)/8#

Explanation:

Let

#I=int_0^1 ln(x+1)/(x^2+1) "d"x#

Generally, when we have #x^2+1# in the denominator we want to use the substitution #x=tantheta#, such that it will cancel out:

#x=tantheta => "d"x =sec^2theta "d"theta #

#{(x=0 => theta=tan^(-1)0 = 0),(x=1 => theta = tan^(-1)1 = pi/4) :}#

#I = int_0^(pi/4) ln(tantheta+1)/(tan^2theta+1) sec^2theta "d"theta=int_0^(pi/4) ln(tantheta+1)/sec^2theta sec^2theta "d"theta#

# = int_0^(pi/4) ln(tantheta+1) "d"theta#

The identity #tan^2theta+1 = sec^2theta# can be easily proven by writing #tan^2theta# as #sin^2theta//cos^2theta#.

Let #phi = pi/4-theta#:

#I = int_(pi/4)^0 ln(tan(pi/4-phi)+1) (-"d"phi)=#

#=int_0^(pi/4) ln(tan(pi/4-phi)+1) "d"phi#

Using the sum identity for tangent, which states that

#tan(a-b) = (tana-tanb)/(1+tanatanb)#

#:. tan(pi/4 - phi) = (1-tanphi)/(1+tanphi)#.

#I = int_0^(pi/4) ln((1-tanphi)/(1+tanphi)+1)"d"phi#

#= int_0^(pi/4) ln((1-tanphi+1+tanphi)/(1+tanphi)) "d"phi#
#= int_0^(pi/4) ln(2/(1+tanphi)) "d"phi#

#phi# is a dummy variable, just as #theta# and #x#. We can replace it with #theta# and the integral would be equivalent.

#:. I = int_0^(pi/4) ln(2/(1+tantheta)) "d"theta#

Remember that

#I = int_0^(pi/4) ln(tantheta+1) "d"theta#

Hence, adding the two equations gives

#2I = int_0^(pi/4) ln(1+tantheta) + ln(2/(1+tantheta)) "d"theta#

#=int_0^(pi/4) ln((1+tantheta)*2/(1+tantheta)) "d"theta#
#= int_0^(pi/4) ln2 "d"theta#

#2I = [thetaln2]_0^(pi//4)=(piln2)/4#

Dividing by two gives us

#color(blue)(I=(piln2)/8)#