Evaluate sin^4 15^@ + cos^4 15^@sin415+cos415?

1 Answer
Jan 12, 2018

The expression gives a result of 7/878

Explanation:

We can see that

(sin^2x + cos^2x)^2 = (sin^2x + cos^2x)(sin^2x+ cos^2x) = sin^4x + cos^4x + 2cos^2xsin^2x(sin2x+cos2x)2=(sin2x+cos2x)(sin2x+cos2x)=sin4x+cos4x+2cos2xsin2x

Therefore,

sin^4x + cos^4x = (sin^2x + cos^2x)^2 - 2cos^2xsin^2xsin4x+cos4x=(sin2x+cos2x)22cos2xsin2x

We seek to find:

(sin^2(15˚) + cos^2(15˚))^2 - 2cos^2(15˚)sin^2(15˚) = sin^4(15˚) + cos^4(15˚)

We know that sin^2x+ cos^2x = 1, therefore,

1^2 - 2cos^2(15˚)sin^2(15˚) = sin^4(15˚) + cos^4(15˚)

Now we notice that sin^2(2x) = 4sin^2xcos^2x, therefore,

1^2 - 1/2sin^2(2(15˚)) = sin^4(15˚) + cos^4(15˚)

1^2 - 1/2sin^2(30˚) = sin^4(15˚) + cos^4(15˚)

1 - 1/2(1/2)^2 = sin^4(15˚) + cos^4(15˚)

7/8 = sin^4(15˚) + cos^4(15˚)

And if we check by calculator, we see that we do indeed get 7/8.

Hopefully this helps!