Evaluate sin^4 15^@ + cos^4 15^@sin415∘+cos415∘?
1 Answer
The expression gives a result of
Explanation:
We can see that
(sin^2x + cos^2x)^2 = (sin^2x + cos^2x)(sin^2x+ cos^2x) = sin^4x + cos^4x + 2cos^2xsin^2x(sin2x+cos2x)2=(sin2x+cos2x)(sin2x+cos2x)=sin4x+cos4x+2cos2xsin2x
Therefore,
sin^4x + cos^4x = (sin^2x + cos^2x)^2 - 2cos^2xsin^2xsin4x+cos4x=(sin2x+cos2x)2−2cos2xsin2x
We seek to find:
(sin^2(15˚) + cos^2(15˚))^2 - 2cos^2(15˚)sin^2(15˚) = sin^4(15˚) + cos^4(15˚)
We know that
1^2 - 2cos^2(15˚)sin^2(15˚) = sin^4(15˚) + cos^4(15˚)
Now we notice that
1^2 - 1/2sin^2(2(15˚)) = sin^4(15˚) + cos^4(15˚)
1^2 - 1/2sin^2(30˚) = sin^4(15˚) + cos^4(15˚)
1 - 1/2(1/2)^2 = sin^4(15˚) + cos^4(15˚)
7/8 = sin^4(15˚) + cos^4(15˚)
And if we check by calculator, we see that we do indeed get
Hopefully this helps!