Evaluate #((sqrt10^1009))/(sqrt10^1011-sqrt10^1007)#without using a calculator?
2 Answers
Explanation:
Note that
#a^b*a^c = a^(b+c)" "# and#" "(a^b)^c = a^(bc)#
So we find:
#(sqrt(10)^1009)/(sqrt(10)^(1011)-sqrt(10)^(1007)) = 10^(1009/2)/(10^(1011/2)-10^(1007/2))#
#color(white)((sqrt(10)^1009)/(sqrt(10)^(1011)-sqrt(10)^(1007))) = 10^(1007/2+1)/(10^(1007/2+2)-10^(1007/2+0))#
#color(white)((sqrt(10)^1009)/(sqrt(10)^(1011)-sqrt(10)^(1007))) = color(red)(cancel(color(black)(10^(1007/2))))/color(red)(cancel(color(black)(10^(1007/2))))*(10/(100-1))#
#color(white)((sqrt(10)^1009)/(sqrt(10)^(1011)-sqrt(10)^(1007))) = 10/99 = 0.bar(10)#
Same answer, different notation.
Explanation:
There is a common factor of
# = (sqrt10^1007(sqrt10^2))/(sqrt10^1007(sqrt10^4-1))#
# = sqrt10^2/(sqrt10^4-1)#
# = 10/(100-1) = 10/99 = 0.bar(10)#