Express the recurring decimal #0.1bar576# as rational number using the concept of geometric series?

1 Answer
Aug 26, 2017

#0.1bar(576)=35/222#

Explanation:

#0.1bar(576)#

= #0.1576576576576576....#

= #1/10+576/10000+576/10000000+576/10000000000+576/10000000000000+........#

= #1/10+576/10^4+576/10^7+576/10^10+576/10^13+......#

= #1/10+576/10^4(1+10^(-3)+10^(-6)+10^(-9)+.......)#

= #1/10+576/10000(1/(1-10^(-3)))#

= #1/10+576/10000xx1000/999#

= #1/10+576/9990#

= #(999+576)/9990#

= #1575/9990#

= #105/666#

= #35/222#