Find all roots of x^3-1, show that if w is a complex root of this equation, the other complex root is w^2 and 1+w+w^2=0?

Find all roots of x^3-1, show that if w is a complex root of this equation, the other complex root is w^2 and 1+w+w^2=0?

1 Answer
Dec 28, 2017

See below.

Explanation:

x^3-1=(x-1)(x^2+x+1) ( difference of 2 cubes )

x^2+x+1=0

Using quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-1+-sqrt((1)^2-4(1)(1)))/(2(1))=>x=(-1+sqrt(-3))/2

x = (-1-sqrt(-3))/2

All roots:

x=1 , x= (-1+sqrt(-3))/2, x= (-1-sqrt(-3))/2

If w = (-1+sqrt(-3))/2

w^2=((-1+sqrt(-3))/2)^2=(-1-sqrt(-3))/2

1+w+w^2=0

1+(-1+sqrt(-3))/2+((-1+sqrt(-3))/2)^2=0