Find all roots of x^3-1, show that if w is a complex root of this equation, the other complex root is w^2 and 1+w+w^2=0?

Find all roots of x31, show that if w is a complex root of this equation, the other complex root is w2 and 1+w+w2=0?

1 Answer
Dec 28, 2017

See below.

Explanation:

x31=(x1)(x2+x+1) ( difference of 2 cubes )

x2+x+1=0

Using quadratic formula:

x=b±b24ac2a

x=1±(1)24(1)(1)2(1)x=1+32

x=132

All roots:

x=1,x=1+32,x=132

If w=1+32

w2=(1+32)2=132

1+w+w2=0

1+1+32+(1+32)2=0