First, develop cos (x - pi/3) = cos x.cos ((pi)/3) + sin ((pi)/3).sin x =
= (1/2)cos x + (sqrt3/2) sin x.
Bring equation (1) to standard form, then, simplify
sqrt3sinx - (sqrt3sin x)/2 - (1/2)cos x = 0
(sqrt3)sin x - cos x = 0 (2).
sin x - (1/sqrt3)cos x = 0
Replace (1/sqrt3) = tan ((pi)/6) = (sin (pi/6))/(cos (pi/6))
Equation (2) --> sin x.cos ((pi)/6) - sin ((pi)/6).cos x = sin (x - pi/6) = 0
sin (x - pi/6) = 0 --> x = 0; x = pi; x = 2pi
a. x - pi/6 = 0 --> x = pi/6
b. x - pi/6 = pi --> x = pi + pi/6 = (7pi)/6
c. x - pi/6 = 2pi --> x = 2pi + pi/6 = (pi)/6
Check by calculator
x = pi/6 -> sqrt3sin x = sqrt3/2; cos (pi/6 - pi/3) = cos (-pi/6) = sqrt3/2. OK