Find all values of #x# in #[0^circ, 360^circ)# to satisfy this equation? #sin x + sqrt3= 3 sqrt3 cos x#

1 Answer
Jun 3, 2018

#59^@83; 278^@37#

Explanation:

#sin x + sqrt3 = 3sqrt3cos x#
#sin x - 3sqrt3cos x = - sqrt3# (1)
Call #tan t = sin t/cos t = 3sqrt3 = 5.196 # -->
#t = 79^@10#, and cos t = 0.19
Equation (1) becomes:
#sin x.cos t - sin t.cos x = - sqrt3cost = - 0.33#
#sin (x - 79^@10) = - 0.33#
Calculator and unit circle give 2 solutions for (x - 79.10):

a. #x - 79.10 = - 19^@27#
#x = - 19.27 + 79.10 = 59^@83#
b. #x - 79.10 = 180 - (-19.27) = 199^@27#
#x = 199.27 + 79.10 = 278^@37#
Check by calculator.
x = 59.83 --> sin x = 0.86 --> #sin x + sqrt3 = 2.60# -->
cos x = 0.50 -->#3sqrt3.cos x = 2.60#. Proved.
x = 278.37 --> sin x = - 0.99 --> #sin x + sqrt3 = 0.74#
cos x = 0.14 --> #3sqrt3cos x = 0.75#. Proved