Find the area of the region bounded by y=2e^xy=2ex, y=e^(2x)y=e2x and x=0x=0?

y=2e^xy=2ex, y=e^(2x)y=e2x and x=0x=0

1 Answer
Feb 21, 2018

The area is 1/212 square units.

Explanation:

You will want to find the intersection points of the curve in order to correctly sketch the region.

e^(2x) = 2e^xe2x=2ex

Let e^x =tex=t.

t^2 = 2tt2=2t

t^2 - 2t = 0t22t=0

t(t - 2) = 0t(t2)=0

t = 0 or 2t=0or2

e^x = 0 or e^x = 2ex=0orex=2

x = O/ or ln2x=orln2

Thus our interval will be [0, ln2][0,ln2].

We now note that on [0, ln2][0,ln2], the function y = 2e^xy=2ex has a larger value than y = e^(2x)y=e2x. Therefore, our integral will be

A = int_0^(ln2) 2e^x -e^(2x)dxA=ln202exe2xdx

A = [2e^x - 1/2e^(2x))]_0^(ln2)A=[2ex12e2x)]ln20

A = 4 - 2 - (2 - 1/2(1))A=42(212(1))

A = 1/2A=12 square units.

Hopefully this helps!