Find the area of the triangle with the coorinates a) #(acostheta_1,bsintheta_1 , (acostheta_2,bsintheta_2 (acostheta_3,bsintheta_3# B) #(am_1^2, 2am_1) , (am_2^2, 2am_2), (am_3^2, 2am_3)#?

There are two separate sets of coordinates.

1 Answer
Dec 21, 2017

See below.

Explanation:

Given a triangle with vertices at

#p_1 = (x_1,y_1)#
#p_2=(x_2,y_2)#
#p_3 = (x_3,y_3)#

Area can be computed as

#A = 1/2 abs(det((x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)))#

so in the first case

#A = 1/2 abs(det((a m_1^2, a m_1, 1),(a m_2^2, a m_2, 1),(a m_3^2, a m_3, 1))) = a^2/2 abs((m_1-m_2)(m_1-m_3)(m_2-m_3))#

analogously

#A = (ab)/2abs(Sin(theta_1 - theta_2) + Sin(theta_3 - theta_1) + Sin(theta_2 - theta_3))#