Find the Derivative of sec x using first principle?
1 Answer
d/dx sec x =tanx secx
Explanation:
Define the function:
f(x)=secx
Using the limit definition of the derivative, we have:
f'(x) = lim_(h rarr 0) (f(x+h)-f(x))/h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (sec(x+h)-sec(x))/h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (1/cos(x+h)-1/cos(x))/h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ((cosx-cos(x+h))/(cos(x+h)cos(x)))/h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-cos(x+h))/(hcos(x+h)cos(x))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-(cosxcos h-sin x sin h))/(hcos(x+h)cos(x))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-cosxcos h+sin x sin h)/(hcos(x+h)cos(x))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx(1-cos h)+sin x sin h)/(hcos(x+h)cos(x))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx(1-cos h))/(hcos(x+h)cos(x))+(sin x sin h)/(hcos(x+h)cos(x))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ((1-cos h))/(hcos(x+h))+(tan x sin h)/(hcos(x+h))
\ \ \ \ \ \ \ \ = lim_(h rarr 0) (1-cos h)/h * sec(x+h)+(sin h)/h * tanx sec(x+h)
Then we use two standard calculus limits:
lim_(theta rarr 0) (1-cos theta)/theta = 0 andlim_(theta rarr 0) (sin theta)/theta = 1
Which gives us:
f'(x) = 0 * sec(x) + 1 * tanx sec(x)
\ \ \ \ \ \ \ \ = tanx secx