Find the derivative of #(tanx)^secx + (secx)^cotx# W.R.T. x?
2 Answers
Derivative of
Explanation:
We use here Chain Rule - In order to differentiate a function of a function, say
Here let us split the function in two parts as follows:
Now we will find derivative of each and then add them up as
As
Hence
=
Similarly
=
Hence derivative of
Explanation:
Both of these derivatives can be found using logarithmic differentiation.
Letting
#ln(w)=ln((tanx)^secx)=secxln(tanx)#
Differentiating, we see that
#1/w((dw)/dx)=secxtanx(ln(tanx))+secx(sec^2x/tanx)#
#(dw)/dx=(tanx)^secx(secxtanx(ln(tanx))+sec^3x/tanx)#
And a similar method is used for
#ln(v)=ln((secx)^cotx)=cotxln(secx)#
#1/v((dv)/dx)=-csc^2xln(secx)+cotx((secxtanx)/secx)#
#(dv)/dx=(secx)^cotx(1-csc^2xln(secx))#
Thus, the derivative of