Find the derivative of #(tanx)^secx + (secx)^cotx# W.R.T. x?

2 Answers
Jun 14, 2017

Derivative of #(tanx)^secx+(secx)^cotx# is

#sec^3x(tanx)^(secx-1)+(secx)^(cotx)#

Explanation:

We use here Chain Rule - In order to differentiate a function of a function, say #y, =f(g(x))#, where we have to find #(dy)/(dx)#, we need to do (a) substitute #u=g(x)#, which gives us #y=f(u)#. Then we need to use a formula called Chain Rule, which states that #(dy)/(dx)=(dy)/(du)xx(du)/(dx)#. In fact if we have something like #y=f(g(h(x)))#, we can have #(dy)/(dx)=(dy)/(df)xx(df)/(dg)xx(dg)/(dh)#.

Here let us split the function in two parts as follows:

#f(x)=(tanx)^secx# and #g(x)=(secx)^cotx#

Now we will find derivative of each and then add them up as

#d/(dx)(f(x)+g(x))=(df)/(dx)+(dg)/(dx)#

As #f(x)=(tanx)^secx#, we can write it as #f(x)=(u(x))^secx#, where #u(x)=tanx# and hence

#(df)/(du)=secx(u(x))^(secx-1)# and #(du)/(dx)=sec^2x#

Hence #(df)/(dx)=secx(u(x))^(secx-1)xxsec^2x#

= #secx(tanx)^(secx-1)sec^2x=sec^3x(tanx)^(secx-1)#

Similarly #(dg)/(dx)=cotx(secx)^(cotx-1)xxsecxtanx#

= #secx(secx)^(cotx-1)=(secx)^(cotx)#

Hence derivative of #(tanx)^secx+(secx)^cotx# is

#sec^3x(tanx)^(secx-1)+(secx)^(cotx)#

Jun 14, 2017

#(tanx)^secx(secxtanx(ln(tanx))+sec^3x/tanx)+(secx)^cotx(1-csc^2xln(secx))#

Explanation:

Both of these derivatives can be found using logarithmic differentiation.

Letting #w=(tanx)^secx#, we see that

#ln(w)=ln((tanx)^secx)=secxln(tanx)#

Differentiating, we see that

#1/w((dw)/dx)=secxtanx(ln(tanx))+secx(sec^2x/tanx)#

#(dw)/dx=(tanx)^secx(secxtanx(ln(tanx))+sec^3x/tanx)#

And a similar method is used for #v=(secx)^cotx#:

#ln(v)=ln((secx)^cotx)=cotxln(secx)#

#1/v((dv)/dx)=-csc^2xln(secx)+cotx((secxtanx)/secx)#

#(dv)/dx=(secx)^cotx(1-csc^2xln(secx))#

Thus, the derivative of #(tanx)^secx+(secx)^cotx# is #(tanx)^secx(secxtanx(ln(tanx))+sec^3x/tanx)+(secx)^cotx(1-csc^2xln(secx))#.