Find the radius of convergence of the following series. Does it converge or diverge? #sum_(n=1)^oo((-1)^nx^n)/root(9)(n)#

#sum_(n=1)^oo((-1)^nx^n)/root(9)(n)#

1 Answer
Apr 3, 2018

By the ratio test:

#R = lim_(n -> oo) (((-1)^(n + 1)x^(n + 1))/(root(9)(n + 1)))/(((-1)^nx^n)/(root(9)(n))#

#R = lim_(n ->oo) |(-x)| root(9)(n)/root(9)(n + 1)#

The limit in #n# has a value of #1#.

Thus

#|x| < 1#

The radius of convergence is #1#, thus the series converges for #|x| < 1#.

Hopefully this helps!