Find the radius of convergence of the following series. Does it converge or diverge? sum_(n=1)^oo((-1)^nx^n)/root(9)(n)n=1(1)nxn9n

sum_(n=1)^oo((-1)^nx^n)/root(9)(n)n=1(1)nxn9n

1 Answer
Apr 3, 2018

By the ratio test:

R = lim_(n -> oo) (((-1)^(n + 1)x^(n + 1))/(root(9)(n + 1)))/(((-1)^nx^n)/(root(9)(n))

R = lim_(n ->oo) |(-x)| root(9)(n)/root(9)(n + 1)

The limit in n has a value of 1.

Thus

|x| < 1

The radius of convergence is 1, thus the series converges for |x| < 1.

Hopefully this helps!