Find the sum of the three smallest positive values of θ such that 4 cos^2(20-π)=3?

1 Answer
May 7, 2018

(13pi)/12

Explanation:

I will assume it says:

4 cos^2(2theta-π)=3

Let u be 2theta-pi

4cos^2u=3

cos^2u= 3/4

cosu= +-sqrt3/2

Now I will list all my solutions from (-pi, pi) instead of (0, 2pi) for a reason I will discuss later:

u= -(5pi)/6, -(pi)/6, pi/6, (5pi)/6

Now replace u with 2theta-pi:

The reason why I listed solutions from -pi is because I will be adding pi here:
2theta-pi=-(5pi)/6, -(pi)/6, pi/6, (5pi)/6

2theta= pi/6, (5pi)/6, (7pi)/6, (11pi)/6

theta= pi/12, (5pi)/12, (7pi)/12, (11pi)/12

Sum of the three smallest positive solutions:
pi/12+(5pi)/12+(7pi)/12= (13pi)/12

graph{4(cos(2x-pi))^2-3 [-10, 10, -5, 5]}