Find the sum to n terms 1/(1.4)+1/(4.7)+1/(7.10)+......to n terms?

1 Answer
Aug 25, 2017

# n/(3n+1).#

Explanation:

Let, #t_n# denote the #n^(th)# term of the series,

# s_n=1/(1*4)+1/(4*7)+1/(7*10)+... "to n terms."#

Observe that, the First Factors of the Dr. of #t_n# are

#1,4,7,... ,# which form an A.P., with the first term #a=1,# and the

common difference,

#d=3; :. n^(th) term=a+(n-1)d=1+3(n-1)=3n-2.#

Similarly, for the Second Factors, #n^(th) term=3n+1.#

#:. t_n=1/{(3n-2)(3n+1)}.#

#:. t_n=1/3{3/{(3n-2)(3n+1)}},#

#=1/3{{(3n+1)-(3n-2)}/{(3n-2)(3n+1)}},#

#=1/3{(3n+1)/{(3n-2)(3n+1)} -(3n-2)/{(3n-2)(3n+1)}},#

#=1/3{1/(3n-2)-1/(3n+1)},#

#:. s_n=1/3sum_1^n{1/(3n-2)-1/(3n+1)},#

#=1/3{(1/1-cancel(1/4))+(cancel(1/4)-cancel(1/7))+(cancel(1/7)-cancel(1/10))+...+(cancel(1/(3n-5))-cancel(1/(3n-2)))+(cancel(1/(3n-2))-1/(3n+1))},#

#=1/3{1/1-1/(3n+1)},#

#=1/3{{(3n+1)-1}/(3n+1)},#

# rArr s_n=n/(3n+1),# is the desired sum.

Enjoy Maths.!