Find the Taylor series (check my work)?
See the answers for work...
**can someone help me work through the derivatives part so I can construct an f^n(a)fn(a) rule?
a. f(x)=1/x^2f(x)=1x2 , a=4a=4
b. f(x)=\sqrt(x)f(x)=√x , a=2a=2
See the answers for work...
**can someone help me work through the derivatives part so I can construct an
a.
b.
3 Answers
For part A
Finished -- can someone check the steps overall?
Explanation:
For part B
Literally confused on step one. Someone help me lol
Explanation:
...
exponent seems to increase by
A)
f(x) = sum_(n=0)^oo (-1)^n((n+1))/(4^(n+2))(x-4)^n
\ \ \ \ \ \ \ = 1/16 -(x-4)/32 +(3(x-4)^2)/256 - (x-4)^3/256 + ...
B)
f(x) = sqrt(2) + (x-2)/(2sqrt(2)) - (x-2)^2/(16sqrt(2)) +(x-2)^3/(64sqrt(2)) -(5(x-2)^4)/(4096sqrt(2)) + ...
Explanation:
We seek:
A) TS of
f(x)=1/x^2 pivoted aboutx=4
B) TS off(x)=sqrt(x) pivoted aboutx=2
We use the general definition of a TS pivot about
f(x) = f(a) + (f^((1))(a))/(1!)(x-a) + (f^((2))(a))/(2!)(x-a)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(a))/(3!)(x-a)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (f^((n))(a))/(n!)(x-a)^n + ...
Part (A):
Differentiating wrt to
f^((0))(x) = 1/x^2
f^((1))(x) = (-2)/x^3 = (-)(2!)/(x^3)
f^((2))(x) = (-2)(-3)/x^4 = (+)(3!)/(x^4)
f^((3))(x) = (-2)(-3)(-4)/x^5 = (-)(4!)/(x^5)
And we reasonably conclude that:
f^((n))(x) = (-1)^n((n+1)!)/(x^(n+2))
Allowing us to construct a Taylor Series, pivoted about
f(x) = f^((0))(4) + (f^((1))(4))/(1!)(x-4) + (f^((2))(4))/(2!)(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(4))/(3!)(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (f^((n))(4))/(n!)(x-4)^n + ...
\ \ \ \ \ \ \ = 1/4^2 + (-(2!)/(4^3))/(1!)(x-4) + ((3!)/(4^4))/(2!)(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (-(4!)/(4^5))/(3!)(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + ((-1)^n((n+1)!)/(4^(n+2)))/(n!)(x-4)^n + ...
\ \ \ \ \ \ \ = 1/4^2 - ((2)/(4^3))(x-4) + ((3)/(4^4))(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ - ((4)/(4^5))(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (-1)^n((n+1))/(4^(n+2))(x-4)^n + ...
\ \ \ \ \ \ \ = 1/16 -(x-4)/32 +(3(x-4)^2)/256 - (x-4)^3/256 + ...
\ \ \ \ \ \ \ = sum_(n=0)^oo (-1)^n((n+1))/(4^(n+2))(x-4)^n
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Part (B):
Differentiating wrt to
f^((0))(x) = sqrt(x)
f^((1))(x) = (1/2)x^(-1/2) = 1/(2x^(1/2)) =
f^((2))(x) = (1/2)(-1/2)x^(-3/2) = -1/(2^2x^(3/2))
f^((3))(x) = (1/2)(-1/2)(-3/2)x^(-5/2) = 3/(2^3x^(5/2))
f^((4))(x) = (1/2)(-1/2)(-3/2)(-5/2)x^(-7/2) = (1.3.5)/(2^4x^(7/2))
f^((5))(x) = (1/2)(-1/2)(-3/2)(-5/2)(-7/2)x^(-9/2) = (1.3.5.7)/(2^5x^(9/2))
Allowing us to construct a Taylor Series, pivoted about
f(x) = f^((0))(2) + (f^((1))(2))/(1!)(x-2) + (f^((2))(2))/(2!)(x-2)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(2))/(3!)(x-2)^3 + (f^((4))(2))/(4!)(x-2)^4 + ... +
\ \ \ \ \ \ \ = sqrt(2) + (1/(2 \ 2^(1/2)))/(1!)(x-2) + (-1/(2^2 \ 2^(3/2)))/(2!)(x-2)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (3/(2^3 \ 2^(5/2)))/(3!)(x-2)^3 + ((1.3.5)/(2^4 \ 2^(7/2)))/(4!)(x-2)^4 + ... +
\ \ \ \ \ \ \ = sqrt(2) + (x-2)/(2sqrt(2)) - (x-2)^2/(16sqrt(2)) +(x-2)^3/(64sqrt(2)) -(5(x-2)^4)/(4096sqrt(2))+ ...