Find the Taylor series (check my work)?

See the answers for work...
**can someone help me work through the derivatives part so I can construct an f^n(a)fn(a) rule?

a. f(x)=1/x^2f(x)=1x2, a=4a=4
b. f(x)=\sqrt(x)f(x)=x, a=2a=2

3 Answers
May 3, 2018

For part A
Finished -- can someone check the steps overall?

Explanation:

f'=-2x^-3
\rArrf'(4)=-2(4)^-3

f''=(-2)(-3)x^-4
\rArrf''(4)=(-2)(-3)(4)^-4

f'''=(-2)(-3)(-4)x^-5
\rArrf'''(4)=(-2)(-3)(4)^-5

f^n(4)=((-1)^n(n-1)!)/(4^n)

C_n=1/(n!)*f^n(a)=((-1)^n(n-1)!)/4^n*1/(n!)=((-1)^n(n-1))/(4^n)
\therefore f(x)=\sum_(n=0)^\inftyC_n(x-a)^n=\sum_(n=0)^\infty(-1)^(n+1)1/(4^n)(x-4)^n, which is 1/x^2 centered at a=4

May 3, 2018

For part B
Literally confused on step one. Someone help me lol

Explanation:

f'=1/(2\sqrtx)=1/2(x)^(-1/2)
f''=-1/(4x^(3/2))=1/4(x)^(-3/2)=1/2(-1/2)x^(-3/2)
f'''=3/(8x^(5/2))=3/8(x)^(-5/2)=1/2(-1/2)(-3/2)x^(-5/2)

...
f^4=1/2(-1/2)(-3/2)(-5/2)x^(-7/2)
f^5=1/2(-1/2)(-3/2)(-5/2)(-7/2)x^(-9/2)

exponent seems to increase by -1/2-n?

May 4, 2018

A) f(x)=1/x^2 pivoted about x=4

f(x) = sum_(n=0)^oo (-1)^n((n+1))/(4^(n+2))(x-4)^n
\ \ \ \ \ \ \ = 1/16 -(x-4)/32 +(3(x-4)^2)/256 - (x-4)^3/256 + ...

B) f(x)=sqrt(x) pivoted about x=2

f(x) = sqrt(2) + (x-2)/(2sqrt(2)) - (x-2)^2/(16sqrt(2)) +(x-2)^3/(64sqrt(2)) -(5(x-2)^4)/(4096sqrt(2)) + ...

Explanation:

We seek:

A) TS of f(x)=1/x^2 pivoted about x=4
B) TS of f(x)=sqrt(x) pivoted about x=2

We use the general definition of a TS pivot about x=a:

f(x) = f(a) + (f^((1))(a))/(1!)(x-a) + (f^((2))(a))/(2!)(x-a)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(a))/(3!)(x-a)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (f^((n))(a))/(n!)(x-a)^n + ...

Part (A):

Differentiating wrt to x we compute the first few derivatives:

f^((0))(x) = 1/x^2

f^((1))(x) = (-2)/x^3 = (-)(2!)/(x^3)

f^((2))(x) = (-2)(-3)/x^4 = (+)(3!)/(x^4)

f^((3))(x) = (-2)(-3)(-4)/x^5 = (-)(4!)/(x^5)

And we reasonably conclude that:

f^((n))(x) = (-1)^n((n+1)!)/(x^(n+2))

Allowing us to construct a Taylor Series, pivoted about x=4:

f(x) = f^((0))(4) + (f^((1))(4))/(1!)(x-4) + (f^((2))(4))/(2!)(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(4))/(3!)(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (f^((n))(4))/(n!)(x-4)^n + ...

\ \ \ \ \ \ \ = 1/4^2 + (-(2!)/(4^3))/(1!)(x-4) + ((3!)/(4^4))/(2!)(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (-(4!)/(4^5))/(3!)(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + ((-1)^n((n+1)!)/(4^(n+2)))/(n!)(x-4)^n + ...

\ \ \ \ \ \ \ = 1/4^2 - ((2)/(4^3))(x-4) + ((3)/(4^4))(x-4)^2 +
\ \ \ \ \ \ \ \ \ \ \ - ((4)/(4^5))(x-4)^3 + ... +
\ \ \ \ \ \ \ \ \ \ \ + (-1)^n((n+1))/(4^(n+2))(x-4)^n + ...

\ \ \ \ \ \ \ = 1/16 -(x-4)/32 +(3(x-4)^2)/256 - (x-4)^3/256 + ...

\ \ \ \ \ \ \ = sum_(n=0)^oo (-1)^n((n+1))/(4^(n+2))(x-4)^n

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Part (B):

Differentiating wrt to x we compute the first few derivatives:

f^((0))(x) = sqrt(x)

f^((1))(x) = (1/2)x^(-1/2) = 1/(2x^(1/2)) =

f^((2))(x) = (1/2)(-1/2)x^(-3/2) = -1/(2^2x^(3/2))

f^((3))(x) = (1/2)(-1/2)(-3/2)x^(-5/2) = 3/(2^3x^(5/2))

f^((4))(x) = (1/2)(-1/2)(-3/2)(-5/2)x^(-7/2) = (1.3.5)/(2^4x^(7/2))

f^((5))(x) = (1/2)(-1/2)(-3/2)(-5/2)(-7/2)x^(-9/2) = (1.3.5.7)/(2^5x^(9/2))

Allowing us to construct a Taylor Series, pivoted about x=2:

f(x) = f^((0))(2) + (f^((1))(2))/(1!)(x-2) + (f^((2))(2))/(2!)(x-2)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (f^((3))(2))/(3!)(x-2)^3 + (f^((4))(2))/(4!)(x-2)^4 + ... +

\ \ \ \ \ \ \ = sqrt(2) + (1/(2 \ 2^(1/2)))/(1!)(x-2) + (-1/(2^2 \ 2^(3/2)))/(2!)(x-2)^2 +
\ \ \ \ \ \ \ \ \ \ \ + (3/(2^3 \ 2^(5/2)))/(3!)(x-2)^3 + ((1.3.5)/(2^4 \ 2^(7/2)))/(4!)(x-2)^4 + ... +

\ \ \ \ \ \ \ = sqrt(2) + (x-2)/(2sqrt(2)) - (x-2)^2/(16sqrt(2)) +(x-2)^3/(64sqrt(2)) -(5(x-2)^4)/(4096sqrt(2))+ ...