Find the value of int_0^1tan^-1((2x-1)/(1+x-x^2))dx10tan1(2x11+xx2)dx?

int_0^1tan^-1((2x-1)/(1+x-x^2))dx10tan1(2x11+xx2)dx

1 Answer

See below.

Explanation:

) I used tan(u+v)=(tanu+tanv)/(1-tanu*tanv)tan(u+v)=tanu+tanv1tanutanv identity for decomposing arctan((2x-1)/(1+x-x^2))arctan(2x11+xx2).

2) I used x=1-ux=1u transform in II integral.

3) After summing 2 integrals, I found result.

II=int_0^1 arctan[(2x-1)/(1+x-x^2)]*dx10arctan[2x11+xx2]dx

=int_0^1 arctan((2x-1)/(1-x*(x+1)))*dx10arctan(2x11x(x+1))dx

=int_0^1 arctanx*dx10arctanxdx+int_0^1 arctan(x-1)*dx10arctan(x1)dx

After using x=1-ux=1u an dx=-dudx=du transforms,

II=int_1^0 arctan(1-u)*(-du)01arctan(1u)(du)+int_1^0 arctan(-u)*(-du)01arctan(u)(du)

=int_1^0 arctan(u-1)*du01arctan(u1)du+int_1^0 arctanu*du01arctanudu

=-int_0^1 arctanu*du10arctanudu-int_0^1 arctan(u-1)*du10arctan(u1)du

=-int_0^1 arctanx*dx10arctanxdx-int_0^1 arctan(x-1)*dx10arctan(x1)dx

After summing 2 integrals,

2I=02I=0, hence I=0I=0.