Note that: (x^3-5x^2+2x)/(x^2+4x) = (x(x^2-5x+2))/(x(x+4))x3−5x2+2xx2+4x=x(x2−5x+2)x(x+4).
Do the division:(x^2-5x+2)/(x+4)x2−5x+2x+4.
(x^2-5x+2)/(x+4) = (x^2+4x-9x+2)/(x+4) = (x^2+4x-9x-36+38)/(x+4)x2−5x+2x+4=x2+4x−9x+2x+4=x2+4x−9x−36+38x+4
= (x(x+4)-9(x+4)+38)/(x+4) = x-9+38/(x+4)=x(x+4)−9(x+4)+38x+4=x−9+38x+4
to see that
(x^3-5x^2+2x) = x(x+4)(x-9+38/(x+4))(x3−5x2+2x)=x(x+4)(x−9+38x+4).
Now we have
sin(x^2+4x)/(x^3-5x^2+2x) = sin(x^2+4x)/((x^2+4x)(x-9+38/(x+4))sin(x2+4x)x3−5x2+2x=sin(x2+4x)(x2+4x)(x−9+38x+4)
= sin(x^2+4x)/((x^2+4x)) * 1/(x-9+38/(x+4))=sin(x2+4x)(x2+4x)⋅1x−9+38x+4
As xrarr0x→0, we see that (x^2+4x)rarr0(x2+4x)→0 so we get:
lim_(xrarr0)sin(x^2+4x)/(x^3-5x^2+2x) = lim_(xrarr0)sin(x^2+4x)/((x^2+4x)) * lim_(xrarr0)1/(x-9+38/(x+4))
= 1 * 1/(0-9+38/(0+4))
= 1/(-9+17/2) = 1/(1/2) = 2