Find the value of limit sin(x^2+4x)/(x^3-5x^2+2x) as x approaches to 0?

1 Answer
Dec 6, 2017

2

Explanation:

Note that: (x^3-5x^2+2x)/(x^2+4x) = (x(x^2-5x+2))/(x(x+4)).

Do the division:(x^2-5x+2)/(x+4).

(x^2-5x+2)/(x+4) = (x^2+4x-9x+2)/(x+4) = (x^2+4x-9x-36+38)/(x+4)

= (x(x+4)-9(x+4)+38)/(x+4) = x-9+38/(x+4)

to see that

(x^3-5x^2+2x) = x(x+4)(x-9+38/(x+4)).

Now we have

sin(x^2+4x)/(x^3-5x^2+2x) = sin(x^2+4x)/((x^2+4x)(x-9+38/(x+4))

= sin(x^2+4x)/((x^2+4x)) * 1/(x-9+38/(x+4))

As xrarr0, we see that (x^2+4x)rarr0 so we get:

lim_(xrarr0)sin(x^2+4x)/(x^3-5x^2+2x) = lim_(xrarr0)sin(x^2+4x)/((x^2+4x)) * lim_(xrarr0)1/(x-9+38/(x+4))

= 1 * 1/(0-9+38/(0+4))

= 1/(-9+17/2) = 1/(1/2) = 2