Find the value of limit sin(x^2+4x)/(x^3-5x^2+2x) as x approaches to 0?

1 Answer
Dec 6, 2017

22

Explanation:

Note that: (x^3-5x^2+2x)/(x^2+4x) = (x(x^2-5x+2))/(x(x+4))x35x2+2xx2+4x=x(x25x+2)x(x+4).

Do the division:(x^2-5x+2)/(x+4)x25x+2x+4.

(x^2-5x+2)/(x+4) = (x^2+4x-9x+2)/(x+4) = (x^2+4x-9x-36+38)/(x+4)x25x+2x+4=x2+4x9x+2x+4=x2+4x9x36+38x+4

= (x(x+4)-9(x+4)+38)/(x+4) = x-9+38/(x+4)=x(x+4)9(x+4)+38x+4=x9+38x+4

to see that

(x^3-5x^2+2x) = x(x+4)(x-9+38/(x+4))(x35x2+2x)=x(x+4)(x9+38x+4).

Now we have

sin(x^2+4x)/(x^3-5x^2+2x) = sin(x^2+4x)/((x^2+4x)(x-9+38/(x+4))sin(x2+4x)x35x2+2x=sin(x2+4x)(x2+4x)(x9+38x+4)

= sin(x^2+4x)/((x^2+4x)) * 1/(x-9+38/(x+4))=sin(x2+4x)(x2+4x)1x9+38x+4

As xrarr0x0, we see that (x^2+4x)rarr0(x2+4x)0 so we get:

lim_(xrarr0)sin(x^2+4x)/(x^3-5x^2+2x) = lim_(xrarr0)sin(x^2+4x)/((x^2+4x)) * lim_(xrarr0)1/(x-9+38/(x+4))

= 1 * 1/(0-9+38/(0+4))

= 1/(-9+17/2) = 1/(1/2) = 2