Given Cotx=5, how do you find sin (x/2), cos (x/2), tan (x/2)?

1 Answer
Feb 13, 2017

sin(x/2)=(-5+sqrt26)/sqrt(52-10sqrt26) cos(x/2)=1/sqrt(52-10sqrt26) and tan(x/2)=-5+sqrt26

or sin(x/2)=(-5-sqrt26)/sqrt(52+10sqrt26), cos(x/2)=1/sqrt(52+10sqrt26) and tan(x/2)=-5-sqrt26

Explanation:

As cotx=5, tanx=1/5

but as tanx=(2tan(x/2))/(1-tan^2(x/2))

(2tan(x/2))/(1-tan^2(x/2))=1/5

or 10tan(x/2)=1-tan^2(x/2)

or tan^2(x/2)+10tan(x/2)-1=0

and using quadratic formula

tan(x/2)=(-10+-sqrt(10^2-4xx1xx(-1)))/2

= (-10+-sqrt104)/2=-5+-sqrt26

i.e. tan(x/2)=-5+sqrt26 or -5-sqrt26

Hence sec(x/2)=sqrt(1+(-5+sqrt26)^2)

= sqrt(1+25+26-10sqrt26)=sqrt(52-10sqrt26) or

sec(x/2)=sqrt(1+(-5-sqrt26)^2)

= sqrt(1+25+26+10sqrt26)=sqrt(52+10sqrt26)

and cos(x/2)=1/sqrt(52-10sqrt26) or 1/sqrt(52+10sqrt26)

and sin(x/2)=(-5+sqrt26)/sqrt(52-10sqrt26) or (-5-sqrt26)/sqrt(52+10sqrt26)