As cscx=8, sinx=1/cscx=1/8 and as sinx>0, we have 0 < x < pi and
0 < x/2 < pi/2 and hence x/2 lies on Q1 and all trigonometric ratios are positive.
As sinx=1/8,
cosx=sqrt(1-(1/8)^2)=sqrt(1-1/64)=+-sqrt63/8
and as cos2A=2cos^2A-1=1-2sin^2A, we have
cosA=sqrt((1+cos2A)/2) and sinA=sqrt((1-cos2A)/2)
Hence cos(x/2)=sqrt((1+cosx)/2) i.e.
sqrt((1+-sqrt63/8))/2=sqrt((8+-sqrt63)/16)=sqrt(8+-3sqrt7)/4=1/2(3sqrt2+-sqrt14)
and sin(x/2)=sqrt((1-cosx)/2) i.e.
sqrt((1+-sqrt63/8))/2=sqrt((8+-sqrt63)/16)=sqrt(8+-3sqrt7)/4=1/2(3sqrt2∓sqrt14)
Note that (A) if cos(x/2)=1/2(3sqrt2+sqrt14), sin(x/2)=1/2(3sqrt2-sqrt14) and tan(x/2)=sqrt(8-sqrt63)/sqrt(8+sqrt63)=8-3sqrt7
and (B) if cos(x/2)=1/2(3sqrt2-sqrt14), sin(x/2)=1/2(3sqrt2+sqrt14) and tan(x/2)=sqrt(8+sqrt63)/sqrt(8-sqrt63)=8+3sqrt7