Given Csc(x)=8; how do you find sin x/2, cos x/2, tan x/2?

1 Answer
Jan 2, 2017

Two solutions - (A) if cos(x/2)=1/2(3sqrt2+sqrt14), sin(x/2)=1/2(3sqrt2-sqrt14) and tan(x/2)=8-3sqrt7

and (B) if cos(x/2)=1/2(3sqrt2-sqrt14), sin(x/2)=1/2(3sqrt2+sqrt14) and tan(x/2)=8+3sqrt7

Explanation:

As cscx=8, sinx=1/cscx=1/8 and as sinx>0, we have 0 < x < pi and

0 < x/2 < pi/2 and hence x/2 lies on Q1 and all trigonometric ratios are positive.

As sinx=1/8,

cosx=sqrt(1-(1/8)^2)=sqrt(1-1/64)=+-sqrt63/8

and as cos2A=2cos^2A-1=1-2sin^2A, we have

cosA=sqrt((1+cos2A)/2) and sinA=sqrt((1-cos2A)/2)

Hence cos(x/2)=sqrt((1+cosx)/2) i.e.

sqrt((1+-sqrt63/8))/2=sqrt((8+-sqrt63)/16)=sqrt(8+-3sqrt7)/4=1/2(3sqrt2+-sqrt14)

and sin(x/2)=sqrt((1-cosx)/2) i.e.

sqrt((1+-sqrt63/8))/2=sqrt((8+-sqrt63)/16)=sqrt(8+-3sqrt7)/4=1/2(3sqrt2∓sqrt14)

Note that (A) if cos(x/2)=1/2(3sqrt2+sqrt14), sin(x/2)=1/2(3sqrt2-sqrt14) and tan(x/2)=sqrt(8-sqrt63)/sqrt(8+sqrt63)=8-3sqrt7

and (B) if cos(x/2)=1/2(3sqrt2-sqrt14), sin(x/2)=1/2(3sqrt2+sqrt14) and tan(x/2)=sqrt(8+sqrt63)/sqrt(8-sqrt63)=8+3sqrt7