Given f(x)=1/8x-3 and g(x)=x^3, how do you find (f^-1of^-1)(6)?

1 Answer
Jun 16, 2018

(f^(-1) @ f^(-1))(6) = 600

Explanation:

We have:

f(x) = 1/8x-3

And so we can construct the inverse, f^(-1)(x) by writing:

y = 1/8x-3

So that:

1/8x = y+3 => x = 8y+24

Thus we have:

f^(-1)(x) = 8x+24

So that:

(f^(-1) @ f^(-1))(x) = f^(-1)( 8x+24 )

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 8( 8x+24 ) + 24

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 64x + 194 + 24

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 64x + 216

Hence:

(f^(-1) @ f^(-1))(6) = 64*6+216 = 600

Noting that g(x) is not required.