Given secalpha=secbetasecgamma+tanbetatangammasecα=secβsecγ+tanβtanγ How will you show? secbeta =secgammasecalpha+-tangammatanalphasecβ=secγsecα±tanγtanα

2 Answers
Jul 19, 2016

See the proof given below.

Explanation:

Let secalpha=a, secbeta=b and secgamma=csecα=a,secβ=bandsecγ=c.

Since, AA theta in RR-{(2k+1)pi/2| k in ZZ}, |sectheta| >=1, we find

that, |a|>=1, |b|>=1, |c|>=1.

rArr tanalpha=+-sqrt(a^2-1), tanbeta=+-sqrt(b^2-1), and,

tangamma=+-sqrt(c^2-1) are defined as |a|, |b|, |c| >=1.

Then, by what is given, we have,

a=bc+-sqrt((b^2-1)(c^2-1)) rArr(a-bc)^2=(b^2-1)(c^2-1)

rArr a^2-2abc+cancel(b^2c^2)=cancel(b^2c^2)-b^2-c^2+1

rArr b^2-2abc=1-a^2-c^2

Adding a^2c^2 on both sides, we have,

b^2-2abc+a^2c^2=a^2c^2-a^2-c^2+1

rArr (b-ac)^2=a^2(c^2-1)-1(c^2-1)=(a^2-1)(c^2-1)

rArr b-ac=+-sqrt((a^2-1)(c^2-1))

rArr b=ac+-sqrt((a^2-1)(c^2-1)

rArr secbeta=secalphasecgamma+-tanalphatangamma.

Hence, the Proof. Enjoy Maths.!

Jul 19, 2016

Given relation

secalpha=secbetasecgamma+tanbetatangamma

=>secalpha-secbetasecgamma=tanbetatangamma

color(green)("Squaring both sides")

=>(secalpha-secbetasecgamma)^2=tan^2betatan^2gamma

=>sec^2alpha+sec^2betasec^2gamma-2secalphasecbetasecgamma=tan^2betatan^2gamma

=>-2secalphasecbetasecgamma=-sec^2alpha+tan^2betatan^2gamma-sec^2betasec^2gamma

=>-2secalphasecbetasecgamma=-sec^2alpha+(sec^2beta-1)(sec^2gamma-1) -sec^2betasec^2gamma

=>-2secalphasecbetasecgamma=-sec^2alpha+cancel(sec^2betasec^2gamma)+1-sec^2gamma-sec^2beta-cancel(sec^2betasec^2gamma)

=>sec^2beta-2secalphasecbetasecgamma=-sec^2alpha+1-sec^2gamma

color(blue)("Adding "(sec^2gammasec^2alpha)" both sides "

=>sec^2beta-2secalphasecbetasecgamma+sec^2gammasec^2alpha=sec^2gammasec^2alpha-sec^2alpha+1-sec^2gamma

=>(secbeta-secgammasecalpha)^2=sec^2alpha(sec^2gamma-1)-1(sec^2gamma-1)

=>(secbeta-secgammasecalpha)^2=(sec^2gamma-1)(sec^2alpha-1)

=>(secbeta-secgammasecalpha)^2=tan^2gammatan^2alpha

=>(secbeta-secgammasecalpha)=+-sqrt(tan^2gammatan^2alpha)

=>secbeta-secgammasecalpha=+-tangammatanalpha

=>color(BLUE)(secbeta=secgammasecalpha+-tangammatanalpha)

Shown