In the case where OAB is a straight line, state the value of p and find the unit vector in the direction of #vec(OA)#?

enter image source here

1 Answer
May 8, 2018

i. #p=2#
#hat(vec(OA))=((2/sqrt6),(1/sqrt6),(1/sqrt6))=2/sqrt6i+1/sqrt6j+1/sqrt6k#
ii. #p=0or3#
iii. #vec(OC)=((7),(3),(4))=7i+3j+4k#

Explanation:

i. We know that #((p),(1),(1))# lies in the same 'plane' as #((4),(2),(p))#. One thing to notice is that the second number in #vec(OB)# is double that of #vec(OA)#, so #vec(OB)=2vec(OA)#

#((2p),(2),(2))=((4),(2),(p))#

#2p=4#

#p=2#

#2=p#

For the unit vector, we need a magnitude of 1, or #vec(OA)/abs(vec(OA))#. #abs(vec(OA))=sqrt(2^2+1+1)=sqrt6#

#hat(vec(OA))=1/sqrt6((2),(1),(1))=((2/sqrt6),(1/sqrt6),(1/sqrt6))=2/sqrt6i+1/sqrt6j+1/sqrt6k#

ii. #costheta=(veca.vecb)/(abs(veca)abs(vecb)#

#cos90=0#

So, #(veca.vecb)=0#

#vec(AB)=vec(OB)-vec(OA)=((4),(2),(p))-((p),(1),(1))=((4-p),(1),(p-1))#

#((p),(1),(1))*((4-p),(1),(p-1))=0#

#p(4-p)+1+p-1=0#

#p(4-p)-p=0#

#4p-p^2-p=0#

#3p-p^2=0#

#p(3-p)=0#

#p=0or3-p=0#

#p=0or3#

iii. #p=3#

#vec(OA)=((3),(1),(1))#
#vec(OB)=((4),(2),(3))#

A parallelogram has two sets of equal and opposite angles, so #C# must be located at #vec(OA)+vec(OB)# (I'll provide a diagram when possible).

#vec(OC)=vec(OA)+vec(OB)=((3),(1),(1))+((4),(2),(3))=((7),(3),(4))#