Vector question?

enter image source here

2 Answers
May 8, 2018

See process below

Explanation:

i) ABC are in straight line, then are linearly dependents #vec(AB)= kvec(BC)#

Calculate #vec(AB)=(2-0,5-2,-2+3)=(2,3,1)# and
#vec(BC)=(1,p-5,q+2)#. Then

#(2,3,1)=k(1,p-5,q+2)=(k,kp-5k,kq+2k)# from here

#2=k#
#3=kp-5k=2p-10=# then #p=13/2#
#1=q+2# then #q=-1#

ii) If BAC is 90º, then #vec(AB)·vec(AC)=0#

#vec(AB)=(2,3,1)#
#vec(AC)=(3,p-2,q+3)#

#vec(AB)·vec(AC)=6+3p-6+q+3=3p+q+3=0# then

#q=-3-3p#

iii)If #p=3# the mod#vec(AB)=sqrt(4+9+1)=sqrt14#

#vec(AC)=(3,1,q+3)# then mod #vec(AC)=sqrt(9+1+(q+3)^2)#

Then squaring both sides #14=10+(q+3)^2=10+q^2+6q+4# or

#q^2+6q=q(q+6)=0# which give #q=0# and #q=-6#

May 8, 2018

Please see the explanation below.

Explanation:

#Question (i)#

If #ABC# is a straight line, this means that #A, B " and " C# are colinear then

#vec(AB)=kvec(BC)# where #k in RR#

#((2-0),(5-2),(-2-(-3)))=k*((3-2),(p-5),(q+2))#

#((2),(3),(1))=k*((1),(p-5),(q+2))#

#{(k=2),(3=2p-10),(1=2q+4):}#

#<=>#, #{(k=2),(p=13/2),(q=-3/2):}#

#Question (ii)#

If the angle #hat(BAC)=90^@#, then

The dot product is

#vec(AB).vec(AC)=0#

#((2-0),(5-2),(-2-(-3))).((3-0),(p-2),(q-(-3)))=0#

#((2),(3),(1)).((3),(p-2),(q+3))=0#

#2*3+3(p-2)+(q+3)=0#

#6+3p-6+q+3=0#

#3p+q=-3#

*#Question (iii)#*

#vec(AB)=((2),(3),(1))#

#vec(AC)=((3),(p-2),(q+3))#

If #AB=AC#, then

#sqrt(2^2+3^2+1^2)=sqrt(3^2+(p-2)^2+(q+3)^2)#

#14=9+(p-2)^2+(q+3)^2#

#(p-2)^2+(q+3)^2=5#

If #p=3#, then

#1+(q+3)^2=5#

#q^2+6q+10-5=0#

#q^2+6q+5=0#

Solving this quadratic equatio in #q#

#q=(-6+-sqrt(36-20))/(2)=(-6+-sqrt16)/2#

#=-3+-2#

The possible values of #q# are

#S={-1, -5}#