How can i integrate 1x8x?

2 Answers
Mar 10, 2018

1x8xdx=17lnx71x7+c

Explanation:

We want to find 1x8xdx.

We start by transforming the integrand into something more integrable.

1x8x=1(1x7)x8=x81x7=7x87(1x7)

So

1x8xdx=7x87(1x7)dx

Now let u=x7 and du=7x8 and substitute this into the integral

7x87(1x7)dx=1711+udu=17ln|1+u|+c

Now substitute back for x

17ln|1+u|+c=17ln1x7+c=17lnx71x7+c

Mar 10, 2018

1x8xdx=17lnx71ln|x|+C

Explanation:

1x8x=1x(x71)

1x8x=Ax+Bx6+Cx5+Dx4+Ex3+Fx2+Gx+Hx71

Multiplying both ends by x8x we get:

1=A(x71)+(Bx6+Cx5+Dx4+Ex3+Fx2+Gx+H)x

Hence:

A=1

B=1

C=D=E=F=G=H=0

So:

1x8xdx=x6x711xdx

1x8xdx=17lnx71ln|x|+C