How can I prove the following equation is an identity? 1+sec^2(x)sin^2(x)=sec^2(x)

1 Answer
Mar 18, 2018

1+sec^2(x)sin^2(x)=sec^2(x)

Use reciprocal identity:
sec^2x=1/cos^2x

Therefore:
1+1/cos^2x*sin^2(x)=sec^2(x)
1+ sin^2x /cos^2x=sec^2(x)

Use the quotient identity:
sin^2x/cos^2x= tan^2x

Therefore:
1+ tan^2x=sec^2(x)

Use the Pythagorean identity:
1+ tan^2x=sec^2(x)

Therefore:
sec^2x=sec^2x