How do find the derivative of y= (1- sec x)/ tan xy=1secxtanx?

1 Answer
Jul 30, 2018

(dy)/(dx)=cscx(cotx-cscx)dydx=cscx(cotxcscx)

Explanation:

Here ,

y=(1-secx)/tanxy=1secxtanx

=>y=1/tanx-secx/tanxy=1tanxsecxtanx

=>y=cotx-(1/cosx)/(sinx/cosx)y=cotx1cosxsinxcosx

=>y=cotx-cscxy=cotxcscx

(dy)/(dx)=-csc^2x-(-cscxcotx)dydx=csc2x(cscxcotx)

(dy)/(dx)=-csc^2x+cscxcotxdydx=csc2x+cscxcotx

:.(dy)/(dx)=cscx(cotx-cscx)