How do find the derivative of y= (1- sec x)/ tan xy=1−secxtanx? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer maganbhai P. Jul 30, 2018 (dy)/(dx)=cscx(cotx-cscx)dydx=cscx(cotx−cscx) Explanation: Here , y=(1-secx)/tanxy=1−secxtanx =>y=1/tanx-secx/tanx⇒y=1tanx−secxtanx =>y=cotx-(1/cosx)/(sinx/cosx)⇒y=cotx−1cosxsinxcosx =>y=cotx-cscx⇒y=cotx−cscx (dy)/(dx)=-csc^2x-(-cscxcotx)dydx=−csc2x−(−cscxcotx) (dy)/(dx)=-csc^2x+cscxcotxdydx=−csc2x+cscxcotx :.(dy)/(dx)=cscx(cotx-cscx) Answer link Related questions What is the derivative of y=cos(x) ? What is the derivative of y=tan(x) ? How do you find the 108th derivative of y=cos(x) ? How do you find the derivative of y=cos(x) from first principle? How do you find the derivative of y=cos(x^2) ? How do you find the derivative of y=e^x cos(x) ? How do you find the derivative of y=x^cos(x)? How do you find the second derivative of y=cos(x^2) ? How do you find the 50th derivative of y=cos(x) ? How do you find the derivative of y=cos(x^2) ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 2041 views around the world You can reuse this answer Creative Commons License