How do I evaluate the following integral?

enter image source here

1 Answer
Feb 26, 2018

1/2x^2+18ln|x^2-36|+C12x2+18lnx236+C

Explanation:

Divide x^2-36x236 into x^3x3 using polynomial long division.

This yields:

intx^3/(x^2-36)dx=int(x+(36x)/(x^2-36))dxx3x236dx=(x+36xx236)dx

Split this integral up:

intxdx + int(36x)/(x^2-36)dxxdx+36xx236dx

intxdx=1/2x^2xdx=12x2

For int(36x)/(x^2-36)dx36xx236dx

u=x^2-36u=x236

du=2xdxdu=2xdx

18du=36xdx18du=36xdx

So, our integral becomes:

1/2x^2+18int(du)/u=1/2x^2+18ln|u|+C=1/2x^2+18ln|x^2-36|+C12x2+18duu=12x2+18ln|u|+C=12x2+18lnx236+C