How do I find the complex conjugate of #10+6i#?
1 Answer
Mar 23, 2018
Explanation:
#"Given a complex number "z=a+-bi" then"#
#"the "color(blue)"complex conjugate "=acolor(red)(∓)bi#
#"note that the product of a complex number and it's"#
#"conjugate results in a real number"#
#(a+bi)(acolor(red)(-)bi)=a^2+b^2larrcolor(blue)"real number"#
#"the conjugate of "10+6i" is "10color(red)(-)6i#
#"and "(10+6i)(10-6i)=100+36=136larrcolor(red)"real"#