How do I find the derivative of f(x)= (7lnx)/(4x)?

1 Answer
Mar 31, 2018

f'(x)=(7(1-lnx))/(4x^2)

Explanation:

Applying the quotient rule yields

f'(x)=(4x*d/dx7lnx-7lnx*d/dx4x)/(4x^2)

(Recalling that d/dxlnx=1/x):

f'(x)=((4(7)x)/x-7(4)(lnx))/(16x^2)

f'(x)=(28-28lnx)/(16x^2)

f'(x)=(28(1-lnx))/(16x^2)

f'(x)=(7(1-lnx))/(4x^2)