How do I find the derivative of f(x)=e^(2x)?

1 Answer
Jan 21, 2016

f'(x)=2*e^(2x)

Explanation:

f(x)=e^g(x)

You can use the Chain Rule:

f'(x)=e^g(x)*g'(x)

:.f'(x)=e^(2x)*2=2*e^(2x)

you can also write:

f(x)=e^(2x)=(e^x)^2

f(x)=[g(x)]^n

f'(x)=n[g(x)]^(n-1)*g'(x)

f'(x)=2(e^x)^1*e^x

remembering that: a^n*a^m=a^(n+m)

f'(x)=2e^(x+x)=e^(2x)