How do I find the derivative of f(x)= (ln10x) / (x+4)f(x)=ln10xx+4?

1 Answer
Mar 13, 2016

f'(x) = 1/(x+4) (1/x - ln(10x)/(x+4))

Explanation:

Use the quotient rule.

frac{"d"}{"d"x}(u/v) = frac{v frac{"d"u}{"d"x} - u frac{"d"v}{"d"x}}{v^2}

In this question

  • u = ln(10x) = ln(10) + ln(x)

frac{"d"u}{"d"x} = frac{"d"}{"d"x}(ln(10)) + frac{"d"}{"d"x}(ln(x))

= 1/x

  • v = x + 4

frac{"d"v}{"d"x} = 1

So, plugging it all in,

f'(x) = frac{v frac{"d"u}{"d"x} - u frac{"d"v}{"d"x}}{v^2}

= frac{(x + 4) (1/x) - ln(10x) (1)}{(x + 4)^2}

= 1/(x+4) (1/x - ln(10x)/(x+4))

= frac{x + 4 - xln(10x)}{x(x + 4)^2}