How do I find the derivative of f(x) = x tan^-1 - ln sqrt(1+x^2)?

1 Answer
Apr 25, 2018

tan^-1x.

Explanation:

f(x)=xtan^-1x-lnsqrt(1+x^2)=xtan^-1x-ln(1+x^2)^(1/2).

:. f(x)=xtan^-1x-1/2ln(1+x^2).

Using the usual rules of diffn., we get,

f'(x)=x*d/dx{tan^-1x}+tan^-1x*d/dx{x}

-1/2*d/dx{ln(1+x^2)},

=x*1/(1+x^2)+tan^-1x-1/2*1/(1+x^2)*d/dx{1+x^2},

=x/(1+x^2)+tan^-1x-1/cancel2*1/(1+x^2)*cancel(2)x,

=cancel(x/(1+x^2))+tan^-1x-cancel(x/(1+x^2)).

rArr f'(x)=tan^-1x.

Spread the Joy of Maths!